
The HPL Exercise
In this exercise, we chose node at Chameleon to run the HPL test. We had built

and installed the HPL benchmark with the Intel MKL and Intel MPI library and used
scripts for compiling. Then we ran the HPL benchmark on a single with our own setup
and tuning the N, NB, and P x Q setups. Finally, we computed the theoretical peak
Flop/s of the CPU and examined the CPU frequency running on the node.

1.HPL benchmark building and installing

1.1 Cluster Description
We chose cluster at Chameleon to run the HPL test. The hardware and software

information that we applied for (2 nodes in total but 1 node for HPL test) in
Chameleon is shown in Table 1.1.1, 1.1.2 and 1.2.

Item NUMA CPU(s) Architecture Name

Chameleon CPU
Compute Server

NUMA node(s):2
NUMA node0 CPU(s):

0,2,4,6,8,10,12,14,16,18
,20,22

NUMA node1 CPU(s):
1,3,5,7,9,11,13,15,17,19

,21,23

24 CPU
op-modes:32bit,64bit

x86_64

Intel(R)
Xeon(R) CPU
E5-2680 v3 @

2.50GHz

CPU (MHz) Byte Order Caches (sum of all) Memory(MB)

Max:3300.00
Min:1200.00

Little Endian

L1d: 768 KiB (24 instances)
L1i: 768 KiB (24 instances)
L2: 6 MiB (24 instances)
L3: 60 MiB (2 instances)

Available:
126954

Total:128811

TABLE 1.1.1,1.1.2: Chameleon Cluster Hardware Configuration

Classification Description Installation Path Version
OS GNU/Linux - 5.15.0-86-generic

Distributor ID
Ubuntu 22.04.3

LTS
- 22.04

Toolkit
Intel® oneAPI
HPC Toolkit

/opt/intel 2023.2

Compiler
Intel Parallel
StudioXE

/opt/intel/api 2023.2

BLAS Intel MKL /opt/intel/api/mkl 2023.2

MPI Intel MPI /opt/intel/api/mpi 2023.2
HPL HPL CPU - HPL-2.3

TABLE 1.2: Chameleon Cluster Software Environment Configuration

In the following test, we would run the HPL benchmark to test the performance
of the nodes, where one node contained 24 cores and 64GB memory in total.

1.2 Libraries Chosen
1.2.1 MPI Choosing: Intel MPI

In the test we use Intel MPI. The Intel MPI Library is a multi-fabric message
passing library that implements the Message Passing Interface.

There are several reasons why we chose Intel MPI.
First of all, it has high performance optimization. Intel MPI is highly optimized for

Intel processors, leveraging various features of Intel architecture to achieve superior
performance. This includes instruction set optimizations and performance tuning
tailored for Intel processors, often resulting in better communication performance on
Intel hardware.

Secondly, it contains good Integration with Intel Libraries and Compilers. Intel
MPI integrates well with Intel MKL, harnessing optimizations to improve application
performance.

Thirdly, when using Intel MPI, we benefited from other Intel tools such as
Intel@Vtune Performance Analyzer, which can determine the HPL hotspot function
for later program improvement and optimization.

Last but not least, Intel MPI supports large-scale parallel computing, making it
suitable for systems with thousands of processors. It incorporates optimizations and
techniques to ensure good scalability on large clusters, which will surely benefit our
later HPL testing.

By using the Intel MPI library, we could compile and run HPL on multiple cluster
interconnects.

1.2.2 BLAS Choosing: Intel MKL

We chose the Intel MKL on the platform as the BLAS we use.
The Intel MKL contains BLAS level1,2,3 and LAPACK and many other Math

Libraries, which support linear algebra operations, including linear equation solving,
eigenvalue problems, matrix factorization. It will definitely support for computing the
HPL test.

Also, according to the testing we did before, the Intel MKL did much benefit to

the performance of system floating-point operations than other BLAS like OpenBLAS.
The integration and Multi-thread support let it became our choice.

1.3 Compiling HPL
We first downloaded the latest version of the HPL test package (hpl-2.3.tar.gz)

from http://www.netlib.org/benchmark/hpl/, unzipped the file (using the scripts: tar
-xvf hpl-2.3.tar.gz) , and we got a directory called hpl-2.3 .

To compile HPL, we first created a Makefile. For this file, the HPL’s naming
convention was Make.arch, where arch means the name of the computer
architecture. Considering that our platform were using Intel processors, we modified
it based on the file setup/Make.Linux_Intel64, and copied it to the previous directory.
The content which should be modified is showed as follows:

1.3.1 HPL Directory Structure / HPL library

1. TOPdir = $(HOME)/hpltest/hpl-2.3
2. INCdir = $(TOPdir)/include
3. BINdir = $(TOPdir)/bin/$(ARCH)
4. LIBdir = $(TOPdir)/lib/$(ARCH)

Here we modified the contents of ‘TOPdir’ to the directory path of hpl-2.3. And
we also rewrote the BINdir and LIBdir according to our actual directory hpl-2.3/bin
and hpl-2.3/lib .

1.3.2 Message Passing library (MPI)

1. MPdir = /opt/intel/oneapi/mpi/latest
2. MPinc = -I$(MPdir)/include
3. MPlib = $(MPdir)/lib/release/libmpi.a

Based on the installation path of Intel MPI on the test platform, we modified the
path information corresponding to ‘MPdir’. We also modified the corresponding path
to ‘MPlib’.

1.3.3 Linear Algebra library Intel MKL

1. LAdir = /opt/intel/oneapi/mkl/2023.2.0
2. LAinc = $(LAdir)/include
3. LAlib = -L$(LAdir)/lib/intel64 \
4. -Wl,--start-group \
5. $(LAdir)/lib/intel64/libmkl_intel_lp64.a \
6. $(LAdir)/lib/intel64/libmkl_intel_thread.a \
7. $(LAdir)/lib/intel64/libmkl_core.a \

8. -Wl,--end-group -lpthread -

we modified the path information corresponding to ‘LAdir’ since we have installed
the version 2023.2 . To use the self-installed math library, we modified the path
information and the library file corresponding to ‘LAlib’ .

1.3.4 Compilers / linkers - Optimization flags

1. CC = /opt/intel/oneapi/mpi/latest/bin/mpiicc
2. CCNOOPT = $(HPL_DEFS)
3. CCFLAGS = $(HPL_DEFS) -O3 -w -ansi-alias -i-static -z noexecstack \
4. -z relro -z now -nocompchk -Wall
5. -qopenmp
6. LINKER = $(CC)
7. LINKFLAGS = $(CCFLAGS) -mt_mpi

According to the Intel Compiler installation path on the test platform, we
modified the CC compiler path information to the path to mpiicc. We also add
-qopenmp to help compile the Compiler.

1.3.5 HPL Compilation

After modifying the Make.Linux_Intel64 file, we compiled HPL. The command is
as following:

1. make arch=Linux_Intel64

The compilation ended correctly, and the file ‘HPL.dat’ and ‘xhpl’ will be
generated in the bin/Linux_Intel64 directory. ‘HPL.dat’ is the configuration file and
‘xhpl’ is the test program which should be executed. At this point, we finished the
compilation of the HPL and related software.

2. Running HPL benchmark on a single node

2.1 HPL.dat Settings and tuning

After the compilation of the HPL benchmark, we now started to set up the
running configuration by setting HPL.dat file.

Here we had mainly 3 items to change: problem size N, block size NB, process
grid ratio P x Q .

First we determined NB. The matrix is split into the block sized NB to cyclically
allocated to each process, where NB refers to the block granularity (size). The choice

of NBs is related to many hardware and software factors. The size of the NBs should
be as close as possible to the size of the Cache line, which can not only exert the
Catch performance but also reduce the cache conflict. Here by experience, we chose
NB = 192.

N is the dimension of the solved linear system Ax = b. Theoretically, the value of
N needs to consider the ratio of node memory capacity and the operation access.
Larger matrix scales will increase the ratio of computing and communication for
better performance. According to the empirical formula,

� = ������(��) × 10243 ×∝/8

And α ≤ 80% is suitable. From 1.1 we know that the free memory in the node is
about 125GB, take α = 80% ,then N ≈ 115000. Since that if N is divisible by NB, the
node can handle the problem with maximally utilization. So, we can take N as
113472.

P×Q represents the number of parallel processes. For the cluster nodes we
used for testing, we would use 2 threads for each of the NUMA nodes in the CPU,
and each node we will have 12 processes. That means that P×Q = 2. In theory, P ≤

Q will have a better floating-point performance, because column-oriented traffic is
much costing than horizontal communication. Above all, we take P = 1, Q = 2.

Next we still have many configuration in HPL.dat. Here we referenced
https://www.advancedclustering.com/act_kb/tune-hpl-dat-file/ and use the
configuration it generated. And we finished PFACTs, RFACTs and the rest of the
settings. Figure2.1.1 are the whole HPL.dat settings:

Figure2.1.1 HPL.dat settings

2.2 Using the binary ‘xhpl’ from the vendor

Now we try to run HPL benchmark on our node. Since we get a ‘xhpl’ file
generated in the directory, we can use it to run the HPL benchmark using the
following command:

1. NP=4
2. mpirun -np $NP ./xhpl

The NP means the number of process we assign. In actual running, we write a
simple bash command ‘ job_lsf.bash ’to run HPL benchmark. The following are the
commands:

1. #!/bin/bash
2. export OMP_NUM_THREADS=12
3. mpirun -n 2 ~/hpltest/hpl-2.3/bin/Linux_Intel64/xhpl > result.out

The combination of these commands means that the xhpl executable file is
launched simultaneously on two MPI processes, and OpenMP parallel programming
techniques are employed to create 12 threads within each process to perform
computational tasks. The result would be seen in result.out if succeeded.

Then We execute it with this command:

1. bash job_lsf.bash

After that the node would run HPL test.

2.3 The Final Output

Here we simply listed the parameter values that the HPL used and the last 31
rows of the final result in result.out. List2.3.1 is parameter values used in HPL testing
and List2.3.2 is the final result:

1. N : 113472
2. NB : 192
3. PMAP : Row-major process mapping
4. P : 1
5. Q : 2
6. PFACT : Right
7. NBMIN : 4
8. NDIV : 2
9. RFACT : Crout
10. BCAST : 1ring
11. DEPTH : 0
12. SWAP : Mix (threshold = 64)

13. L1 : transposed form
14. U : transposed form
15. EQUIL : yes
16. ALIGN : 8 double precision words

List2.3.1 Parameter Values used in HPL testing

1. Column=000112128 Fraction=98.8% Gflops=6.036e+02

2. Column=000112320 Fraction=99.0% Gflops=6.036e+02

3. Column=000112512 Fraction=99.2% Gflops=6.036e+02

4. Column=000112704 Fraction=99.3% Gflops=6.036e+02

5. Column=000112896 Fraction=99.5% Gflops=6.036e+02

6. Column=000113088 Fraction=99.7% Gflops=6.036e+02

7. Column=000113280 Fraction=99.8% Gflops=6.036e+02

8. ==

9. T/V N NB P Q Time Gflops

10. --

11. WR00C2R4 113472 192 1 2 1614.98 6.0314e+02

12. HPL_pdgesv() start time Wed Oct 11 21:51:18 2023

13.
14. HPL_pdgesv() end time Wed Oct 11 22:18:13 2023

15.
16. --VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV-

17. Max aggregated wall time rfact . . . : 7.70

18. + Max aggregated wall time pfact . . : 4.42

19. + Max aggregated wall time mxswp . . : 0.84

20. Max aggregated wall time update . . : 1553.67

21. + Max aggregated wall time laswp . . : 147.94

22. Max aggregated wall time up tr sv . : 1.20

23. --

24. ||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 2.06534730e-03 PASSED

25. ==

26.
27. Finished 1 tests with the following results:

28. 1 tests completed and passed residual checks,

29. 0 tests completed and failed residual checks,

30. 0 tests skipped because of illegal input values.

31. --

List2.3.2 Final Result
So, the briefly result is that the node ran the test in 1614.98s, and its Gflop/s is
6.0314e+02 = 603.14 Gflop/s.

3. Theoretical peak Flop/s Computation
3.1 Theoretical peak FLOP/s Computation

Now we compute the theoretical peak Flop/s for our single using node.
According to the Computation Formula:

����� = ������ × ��� ��������� ×
�����
�����

①

�����
�����

=
256(������ �����ℎ)

64
× 2(���) × 2(�� ����) = 16 ②

From 1.1 we know the Ncores = 24, CPU frequency = 2.5GHz. So one node’s
Rpeak is:

����� = 24 × 2.5 × 16 � ����/� = 960�����/�

That is higher than our result 603.14Gflop/s. If we take our testing result as the
Rmax, our node’s LINPACK efficiency is:

η =
����
�����

× 100% = 62.83%

3.2 CPU’s actual frequency while running HPL

To know the CPU’s actual frequency while running, we use the following
command to catch the CPU information to CPUrunning.txt .

1. cat /proc/cpuinfo > CPUrunning.txt

We open the file and check the processor id and its cpu MHz. The following
graph3.2.1 and graph3.2.2 are the processor and its cpu MHz. They are grouped
according to the NUMA node.

processor:
0
cpu MHz:
2083.859

processor:
2
cpu MHz:
2083.894

processor:
4
cpu MHz:
2083.955

processor:
6
cpu MHz:
2083.989

processor:
8

cpu MHz:
2084.028

processor:
10
cpu MHz:
2084.057

processor:
12
cpu MHz:
2084.097

processor:
14
cpu MHz:
2084.131

processor:
16
cpu MHz:
2084.162

processor:
18
cpu MHz:
2084.196

processor:
20
cpu MHz:
2084.233

processor:
22
cpu MHz:
2084.264

Graph3.2.1 processors in NUMA node0

processor:
1
cpu MHz:
2316.720

processor:
3
cpu MHz:
2316.560

processor:
5

cpu MHz:
2316.453

processor:
7

cpu MHz:
2316.355

processor:
9
cpu MHz:
2316.259

processor:
11
cpu MHz:
2316.171

processor:
13
cpu MHz:
2316.075

processor:
15
cpu MHz:
2315.982

processor:
17
cpu MHz:
2315.886

processor:
19
cpu MHz:
2315.785

processor:
21
cpu MHz:
2315.696

processor:
23
cpu MHz:
2315.612

Graph3.2.2 processors in NUMA node1

As we can see, the processors in NUMA node0 use 2084 MHz CPU frequency in
average, and the processors in NUMA node1 use 2316 MHz CPU frequency in
average. And all of the processors’ CPU frequency are lower than nominal frequency.

We take the average CPU MHz 2084+2316
2

��� = 2200��� = 2.2���, and put it

into the Rpeak computation formula② and get:

�����' = 24 × 2.2 × 16 � ����/� = 844.8�����/�

Which shows that if we can booster CPU frequency, we can harvest higher
Gflop/s.

Summary

In this exercise, the focus was on conducting an High-Performance Linpack test
on a specific Chameleon node. The process began with the construction and
installation of the HPL benchmark, utilizing the Intel MKL and Intel MPI library. To
streamline this procedure, predefined scripts were employed for compilation.

The subsequent step involved executing the HPL benchmark on a single node
while customizing and fine-tuning crucial parameters such as N (problem size), NB
(block size), and the P x Q configuration. The aim was to optimize the performance
and efficiency of the computation.

Finally, we encompassed an assessment of the theoretical peak Flop/s by the
CPU. Additionally, a close examination of the CPU's operating frequency on the node
was conducted.

Overall, we learn how to install and have HPL test on Chameleon. And we learn
the basic parameters of HPL test, which help us know the main direction to optimize
the test. What’s more, we found that the CPU frequency is lower than its nominal
frequency, which make us think the possibility to optimize it.

